skip to main content


Search for: All records

Creators/Authors contains: "Agrawal, Ayush"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Solvents enable growth of phase-pure two-dimensional perovskites without dissolving three-dimensional perovskite substrates. 
    more » « less
  2. null (Ed.)
  3. The main drawbacks of input-output linearizing controllers are the need for precise dynamics models and not being able to account for input constraints. Model uncertainty is common in almost every robotic application and input saturation is present in every real world system. In this paper, we address both challenges for the specific case of bipedal robot control by the use of reinforcement learning techniques. Taking the structure of a standard input-output linearizing controller, we use an additive learned term that compensates for model uncertainty. Moreover, by adding constraints to the learning problem we manage to boost the performance of the final controller when input limits are present. We demonstrate the effectiveness of the designed framework for different levels of uncertainty on the five-link planar walking robot RABBIT. 
    more » « less